Conditional quantiles and tail dependence
نویسندگان
چکیده
منابع مشابه
VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles∗
This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple versio...
متن کاملStrength of tail dependence based on conditional tail expectation
We use the conditional distribution and conditional expectation of one random variable given the other one being large to capture the strength of dependence in the tails of a bivariate random vector. We study the tail behavior of the boundary conditional cumulative distribution function (cdf) and two forms of conditional tail expectation (CTE) for various bivariate copula families. In general, ...
متن کاملOn M-estimators of Approximate Quantiles and Approximate Conditional Quantiles
M-estimators introduced in Huber (1964) provide a class of robust estimators of a center of symmetry of a symmetric probability distribution which also have very high eeciency at the model. However it is not clear what they do estimate when the probability distributions are nonsymmetric. In this paper we rst show that in the case of arbitrary, not necessarily symmetric probabilty distributions,...
متن کاملNonparametric estimation of the conditional tail index and extreme quantiles under random censoring
In this paper, we investigate the estimation of the tail index and extreme quantiles of a heavy-tailed distribution when some covariate information is available and the data are randomly right-censored. We construct several estimators by combining a moving-window technique (for tackling the covariate information) and the inverse probability-of-censoring weighting method, and we establish their ...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2015
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2015.01.011